
Getting Started

Getting Started Connecting a WebObjects Application to the Web

2

This chapter contains a brief introduction to creating, installing, and running
applications with WebObjects. Using the web equivalent of HelloWorld as an
example, this chapter answers the following basic questions:

• How do I connect a WebObjects application to the Web?
• What’s in a WebObjects application?
• What parts do I write, and how do I write them?
• How do I run a WebObjects application?
• What happens behind the scenes of a running WebObjects application?

Connecting a WebObjects Application to the Web

WebObjects is an environment for building and deploying World Wide Web
applications. For development, it provides a scripting language and objects that
you use to create web applications. For deployment, it provides a system of
interrelated components that connect your WebObjects applications to the
Web. WebObjects development topics are discussed in more detail later in this
chapter. This section discusses the parts of WebObjects related to deployment.

Connecting a WebObjects application to the Web involves the following:

• An HTTP server. You can use any HTTP server that uses the Common
Gateway Interface (CGI) or the Netscape Server API (NSAPI).

• A WebObjects adaptor. A WebObjects adaptor connects WebObjects
applications to the Web by acting as an intermediary between web
applications and HTTP servers. Adaptors insulate applications from server
interfaces by handling all server communication. Simply by switching
adaptors, you use a different HTTP server and a different server interface
without modifying application code.

WebObjects provides an adaptor for servers that use the Common Gateway
Interface (CGI) and an adaptor for the Netscape Commerce Server that uses
the Netscape Server API (NSAPI).

• A WebObjects application executable. The application executable receives
incoming requests and responds to them, usually by returning a dynamically
generated HTML page. This executable can be a compiled application
linked with the WebObjects library, or it can be one of the two default
WebObjects application executables: DefaultApp or EOFDefaultApp.

If the application doesn’t contain any compiled code, you use one of the
default applications. Instead of building your own executable, you implement

3

Getting Started Connecting a WebObjects Application to the Web

all the application logic in script files. The default applications use these
scripts to respond to requests.

Users can use any web browser to connect to a WebObjects application. As
shown in Figure 1, when an HTTP server receives a request for a WebObjects
application, it forwards the request to the WebObjects adaptor. The adaptor in
turn forwards the request to the WebObjects application. Similarly, after an
application generates a response—usually an HTML page—the application
sends the response to the WebObjects adaptor, and the adaptor sends the
response to the HTTP server.

Figure 1. Chain of Communication between Browser and WebObjects

WebObjects Adaptors
When a WebObjects adaptor receives a request from the server, it repackages
the request in a standard WebObjects format and forwards it to an appropriate
WebObjects application. As shown in Figure 2, all WebObjects adaptors
communicate with WebObjects applications in the same way, but they
communicate with HTTP servers using whatever interface is provided by a
particular server. For example, the WebObjects CGI adaptor uses the Common
Gateway Interface, and the Netscape Interface adaptor uses the Netscape
Server API. Thus, WebObjects adaptors can take advantage of server-specific
interfaces but still provide server-independence.

Figure 2. The Role of a WebObjects Adaptor

The Common Gateway Interface is supported by all HTTP servers, so you can
use the WebObjects CGI adaptor with any server—including those that are
publicly available. As performance demands increase, you can use the Netscape
Interface adaptor with a server that supports the Netscape Server API. The

WebObjects
Adaptor

Web
Browser

WebObjects
Application

HTTP
Server

WebObjects
Adaptor

HTTP
Server

WebObjects
Application

WebObjects
Interface

Server
Interface

Getting Started Connecting a WebObjects Application to the Web

4

Netscape Server API eliminates the overhead of starting a new process for each
request by dynamically loading the Netscape Interface adaptor. As shown in
Figure 3, the communication between the Netscape Interface adaptor and the
HTTP server occurs inside a single process.

Figure 3. The Netscape Interface Adaptor

By default, WebObjects uses the WebObjects CGI adaptor. For more
information on configuring this adaptor or the Netscape Interface adaptor, see
the “Serving WebObjects” document.

Where Things Go
WebObjects is installed in a platform-dependent location. The following table
shows the location for each platform:

Note: On Windows NT, you specify the location of NEXT_ROOT during the
WebObjects installation process.

The NextLibrary/WebObjects directory, regardless of its location on your system,
contains many of the resources required to run WebObjects applications. Within
it, you’ll find the following subdirectories:

• AdaptorSource contains the source code for the WebObjects adaptors, which
you can compile for additional platforms.The source code for the WebObjects
adaptors is only available in the WebObjects Pro and WebObjects Enterprise
products.

Platform Installation Directory

NEXTSTEP /NextLibrary/WebObjects

Solaris /usr/NextLibrary/WebObjects

Windows NT <NEXT_ROOT>/NextLibrary/WebObjects

WebObjects
Application

WebObjects
Interface

Netscape
Interface
Adaptor

Netscape
Commerce

Server

5

Getting Started Connecting a WebObjects Application to the Web

• Executables contains DefaultApp or EOFDefaultApp, generic WebObjects
application executables that respond to incoming requests using resources
you provide.

• cgi-bin contains WebObjects, the CGI adaptor that handles communication
between your web server and WebObjects applications using the Common
Gateway Interface. Your HTTP server does not access the WebObjects program
in this directory. Instead, it accesses a link or copy of it in the server’s <cgi-bin>
directory as described later in this section.

• Examples contains several sample WebObjects applications.

Figure 4. The Contents of NextLibrary/WebObjects

Your web server must be able to access the components installed in
NextLibrary/WebObjects to run the examples and WebObjects applications you
write. Therefore, after installing WebObjects, make sure your web server’s
directories contain the following links or copies:

• <cgi-bin>/WebObjects is a copy of or link to
NextLibrary/WebObjects/cgi-bin/WebObjects.

WebObjects

Executables

HelloWorldDodgeLite

Examplescgi-bin

DefaultAppWebObjects

NextLibrary

Getting Started Connecting a WebObjects Application to the Web

6

• <DocumentRoot>/WebObjects is a new directory in which WebObjects
application resources are installed.

• <DocumentRoot>/WebObjects/Examples is a copy of or link to
NextLibrary/WebObjects/Examples.

Figure 5 shows the resources that should be present in your web server after the
WebObjects installation process is completed. If any of these links or copies are
missing, check the ReadMe file in NextLibrary/WebObjects for any steps in the
procedure that you may have missed.

Figure 5. The Contents of Your Web Server’s Directories After Installing WebObjects

WebObjects

HelloWorldDodgeLite

DocumentRoot

Examples

cgi-bin

WebObjects

7

Getting Started The Ingredients of a WebObjects Application

The Ingredients of a WebObjects Application

To create a WebObjects application, you use the WebObjects library of classes
that define an infrastructure for web applications. A WebObjects application
uses instances of these classes to respond to requests received from a web
browser. For instance, every WebObjects application contains an application
object that receives requests and responds to them using application resources
you provide.

A typical WebObjects application contains the following ingredients:

• Components that specify the content, presentation, and behavior of the
application’s pages

• An optional application script that creates and manages application-wide
resources

• Optional compiled code that implements custom data and logic

• WebObjects classes that provide an infrastructure for the web application

To write a WebObjects application, you provide components and, optionally,
compiled code.

Note: You can incorporate compiled code in a WebObjects application only if you
have the WebObjects Pro or WebObjects Enterprise product.

If you write an application that includes compiled custom code, you must also
provide an application executable by compiling and linking your application
with the WebObjects library. See the “Compiling and Debugging WebObjects
Applications” chapter for more information. Applications that don’t include
compiled code use the DefaultApp or EOFDefaultApp executable. In either
case, the application executable receives incoming requests and responds to
them using the components you provide.

Components
Components are a part of each WebObjects application that you write. Each
component defines the content, presentation, and behavior of a page or portion
of a page. You can write scripted components in WebScript (the WebObjects
scripting language) or compiled components in Objective-C.

Scripted components generally consist of three files:

Getting Started The Ingredients of a WebObjects Application

8

• An HTML template that specifies how the corresponding page looks. HTML
templates contain markup elements that define the format for both static and
dynamic page content.

• A script file that implements application behavior specific to the component.
Script files declare variables for managing dynamic page content and actions
that define responses to user requests.

• A declarations file that defines a mapping between the HTML template and
script variables and actions.

Scripted and compiled components play the same role, and are created in
essentially the same way. However, instead of using a script file, compiled
components use an Objective-C class.

The files of a component are organized in a component directory. The name of the
directory has the same base name as the name of the component, but the
extension .wo. For example, the HelloWorld example has a WebScript
component named Main and a corresponding component directory named
Main.wo.

The template, script, and declarations files in the component directory also have
the same base name, and each file type has its own extension. Template files
have the extension .html, declarations have the extension .wod, and scripts have
the extension .wos. Thus, the Main component has the files Main.html, Main.wos,
and Main.wod, as shown in Figure 6. In addition to these three files, a component
directory may also contain images and other resources used by the component.

Figure 6. The Contents of a Component Directory

Main.html Main.wod Main.wos

Main.wo

9

Getting Started The Ingredients of a WebObjects Application

Note: Not all components represent an entire page. Some components represent
only a portion of a page. You can extract common data and functionality from
components for whole pages into smaller, reusable components. These smaller
components can be nested as subcomponents inside a component representing
a whole page. For more information, see the “Creating Reusable Components”
chapter.

The Main Component
The component for the first page of a WebObjects application is generally
named Main. When a user starts a session with a WebObjects application, he or
she can specify the name of the first page, but it is uncommon to have to do so.
If no page is specified, WebObjects applications look for a component named
Main to represent the first page.

Where Components Go
Generally, you put the components of a WebObjects application in a directory
with the same name as the application. For example, the HelloWorld example
has a corresponding directory named HelloWorld that contains its component
directories.

WebObjects application directories such as HelloWorld can go anywhere under
the <DocumentRoot>/WebObjects directory. You can create application directories
immediately under <DocumentRoot>/WebObjects, or you can create hierarchies of
directories within <DocumentRoot>/WebObjects to organize application directories
however you wish.

As shown in Figure 7, the HelloWorld application directory is located in
<DocumentRoot>/WebObjects/Examples.

Reusable WebObjects components used by multiple applications aren’t usually
kept in application directories. Rather, they are located directly under
<DocumentRoot>/WebObjects so they can be accessed by all the applications that use
them.

Getting Started The Ingredients of a WebObjects Application

10

Figure 7. HelloWorld Application Directory

Optional Application Script
In addition to components, some applications have an application script that
creates and manages application-wide resources. Application scripts are
installed directly under the application directory, and they have the name
Application.wos. For example, if HelloWorld had an application script, it would go
in the directory <DocumentRoot>/WebObjects/Examples/HelloWorld. For more
information on application scripts, see the section “The Role of Scripts in a
WebObjects Application” in the “Using WebScript” chapter.

WebObjects

HelloWorld

DocumentRoot

Examples

Main.wo Hello.wo

11

Getting Started The Ingredients of a WebObjects Application

Optional Compiled Code
If you have WebObjects Pro or WebObjects Enterprise, you can incorporate
custom compiled code into your WebObjects applications. Compiled code can
play many different roles in a WebObjects application. For example, compiled
code is commonly used to achieve the following objectives:

• Encapsulate business data and logic. You can design classes or modules that
encapsulate behavior that is specific to the domain of your application. For
example, an application that reserves conference rooms could use
ConferenceRoom objects to manage room data like location and maximum
occupancy. In addition, the ConferenceRoom class could implement business
logic that denies requests for rooms that are already reserved. See the
“Compiling and Debugging WebObjects Applications” chapter for more
information on providing custom business logic using compiled code.

• Improve performance. By converting scripted components to Objective-C
components, you can improve the performance of a WebObjects application.
Script length, script complexity, and the number of nested subcomponents all
affect a component’s performance. As a component becomes more
sophisticated, the performance advantage of writing it in Objective-C
increases.

• Provide custom dynamic elements. A dynamic element is an object that uses an
HTML template to generate HTML elements containing dynamic content.
WebObjects provides elements such as buttons, hyperlinks, forms, text fields,
and so on, which not only generate dynamic HTML but also bind custom
logic to user actions. You can add to the collection of dynamic elements that
come with WebObjects, or you can modify their behavior by replacing them
with one of your own.

• Interface with other software. For example, you can use Enterprise Objects
Framework to interface with a database server, and you can use NeXT’s
Distributed Objects system to implement communication between
WebObjects applications and other software. See “The Enterprise Objects
Framework Developer’s Guide” for more information on Enterprise Objects
Framework.

Application Executables
Applications that don’t contain compiled code use DefaultApp or
EOFDefaultApp. EOFDefaultApp is provided with WebObjects Enterprise,
while DefaultApp is provided with the other products. Both applications play
the same role, which is to use the resources you provide to respond to user
requests. The difference between the two executables is that EOFDefaultApp

Getting Started Running WebObjects Applications

12

can use Enterprise Objects Framework to access industry-standard relational
databases using an object-oriented interface. For more information on
Enterprise Objects Framework, see “Enterprise Objects Framework
Developer’s Guide.”

If you incorporate compiled code into your WebObjects application, you must
also provide the application executable. You must write a main() function,
compile the source code, and link it with the WebObjects library. See the
“Compiling and Debugging WebObjects Applications” chapter for more
information.

Where Application Executables Go
If you build an executable for a WebObjects application containing compiled
code, you can put it in one of two places:

• The application directory under <DocumentRoot>/WebObjects. For example, if
you created a compiled application called CheckFund and installed its
components in <DocumentRoot>/WebObjects/FinancialApps/CheckFund, you would
also put the executable in <DocumentRoot>/WebObjects/FinancialApps/CheckFund.

• The application executable directory under NextLibrary/WebObjects/Executables.
The path of the application executable directory relative to
<NextLibrary>/WebObjects/Executables must be the same as the path of the
application directory relative to <DocumentRoot>/WebObjects. For example,
instead of installing the CheckFund executable in the application directory
as described above, you could put it in
NextLibrary/WebObjects/Executables/FinancialApps.

Note: The default application executable—either DefaultApp or
EOFDefaultApp—is located in NextLibrary/WebObjects/Executables.

Running WebObjects Applications

To run a WebObjects application, you start the application and then connect to
it with a web browser.

Starting a WebObjects Application
Whether you’re using the default application executable or your own
WebObjects application executable, there are two ways to start a WebObjects
application:

13

Getting Started Running WebObjects Applications

• Start it from the command prompt.
• Let a WebObjects adaptor autostart it.

The autostart mechanism has the advantage of convenience, but it’s easier to
debug an application that you start explicitly. In addition, you have more
deployment options if you start WebObjects applications yourself. For more
information on deployment options, see the “Serving WebObjects” document.

Starting WebObjects Applications from the Command Prompt
To start a WebObjects application:

1. Locate the application executable. If you don’t have compiled code and
haven’t built a custom executable, use the default application executable
located in NextLibrary/WebObjects/Executables.

2. Change directories to the directory in which the application executable is
located.

3. Start the application by invoking the executable as follows:

ApplicationExecutable RelativeApplicationDirectory

You must provide at least one argument to the executable: the application
directory relative to <DocumentRoot>/WebObjects. WebObjects applications use
this argument to find application resources such as components and images.
For example, the HelloWorld application directory is located in
<DocumentRoot>/WebObjects/Examples/HelloWorld. Therefore, the relative
application directory is Examples/HelloWorld, and the following command starts
HelloWorld:

DefaultApp Examples/HelloWorld

You start a custom executable the same way. For example, the following
command starts an application named Registration whose application
directory is <DocumentRoot>/WebObjects/Promos/Registration:

Registration Promos/Registration

Note: Additional configuration is required if the WebObjects application is not
installed on the HTTP server. See the “Serving WebObjects” document for
additional instructions.

Autostarting WebObjects Applications
When a WebObjects adaptor receives a request from a web server, it checks to
see if the requested WebObjects application is running. If the application is not

Getting Started Running WebObjects Applications

14

running, the adaptor starts it automatically. Thus, if you don’t start your
application from the command prompt, WebObjects starts it for you.

When an adaptor receives a request for an application that isn’t running, it looks
in NextLibrary/WebObjects/Executables for the application executable. If it doesn’t
find an executable there, it looks in <DocumentRoot>/WebObjects. If the adaptor
doesn’t find an application in either location, it starts the default application
executable instead. For more information, see the “Where Application
Executables Go” section.

Note: To use the autostart feature of WebObjects, you must install WebObjects
on your web server host.

Connecting to a WebObjects Application
To connect to a WebObjects application from a web browser, you open a URL
with the following form:

Figure 8. URL to Start a WebObjects Application

The WebObjects application
directory in
<DocumentRoot>/WebObjects

Examples/HelloWorld

Name of the
Web server’s
cgi-bin directory

cgi-bin/

Web server
host name

//sonora/http: WebObjects/

15

Getting Started Writing HelloWorld

Writing HelloWorld

Writing a WebObjects application involves creating a component for each page
in the application and installing the components in a directory that’s accessible
to WebObjects and your web server. Using HelloWorld as an example, this
section explains how to perform these tasks. As an additional reference, the
source code for HelloWorld is located in NextLibrary/WebObjects/Examples.

HelloWorld
The HelloWorld application consists of two pages. Figure 9 shows the first page.

Figure 9.The First Page of HelloWorld

The presentation may vary slightly from browser to browser, but the page
elements are the same regardless. The first page contains a single input field in
which you type your name. Clicking Submit opens a new page with a
personalized greeting. For instance, typing “Joe” and clicking Submit opens a
page similar to the one in Figure 10.

Getting Started Writing HelloWorld

16

Figure 10.The Second Page of HelloWorld

The HelloWorld application has three simple requirements: get the name that’s
entered in the input field, dynamically generate the HTML required to display
the message in the second page, and open the second page when Submit is
clicked. More generally:

• Get user input.
• Determine dynamic page content and generate corresponding HTML.
• Specify page-to-page transitions.

HelloWorld has two components—Main and Hello. The following sections
describe the files for the Main and Hello components of the HelloWorld
application.

Main Component Files
The template for the Main page contains the following HTML elements:

<HTML>

<HEAD>

 <TITLE>Hello World!</TITLE>

</HEAD>

<BODY>

<FORM>

What's your name?

<P>

<WEBOBJECT NAME = "NAME_FIELD"><INPUT TYPE = "TEXT"></WEBOBJECT>

<WEBOBJECT NAME = "SUBMIT_BUTTON"><INPUT TYPE = "SUBMIT"></WEBOBJECT>

</P>

</FORM>

</BODY>

</HTML>

17

Getting Started Writing HelloWorld

The WEBOBJECT elements—a new kind of markup element introduced by
WebObjects—are replaced with dynamically generated HTML when the
HelloWorld application returns the Main page. The declarations file specifies
the kind of objects that perform the HTML substitutions.

The declarations file for the Main page contains the following two declarations:

NAME_FIELD: WOTextField {value = nameString};

SUBMIT_BUTTON: WOSubmitButton {action = sayHello};

Each declaration corresponds to a WEBOBJECT element in the template.
Each declaration declares an object—a WODynamicElement—to represent its
corresponding WEBOBJECT element. The declaration specifies what kind of
object to create and how to configure it. Specifically, a declaration associates a
WODynamicElement with variables and methods defined in the corresponding
script file. For more information on dynamic elements, see the chapter “Using
Dynamic Elements.”

The script for the Main page contains the following lines:

id nameString;

- sayHello

{

id nextPage;

nextPage = [WOApp pageWithName:@"Hello"];

[nextPage setNameString:nameString];

return nextPage;

}

Together, these three files (template, declarations, and script) establish what
action to take when a user clicks Submit, which is to return the second page with
a customized greeting. The files do two things:

• Store the name entered by the user.
• Return the Hello page.

Storing the Name
The declaration for the NAME_FIELD WEBOBJECT element:

NAME_FIELD: WOTextField {value = nameString};

specifies how to store the name entered by the user. It associates the
NAME_FIELD element with the nameString variable declared in Main.wos.

The declaration specifies that a WOTextField object generates HTML for the
NAME_FIELD element, and that the variable assigned to the value attribute of
the WOTextField object—nameString— stores user input.

Getting Started Writing HelloWorld

18

Figure 11. Getting and Storing a Value

For more information on WOTextFields, see the “WOTextField” section in the
“Using Dynamic Elements” chapter.

Returning the Hello Page
The declaration for the SUBMIT_BUTTON WEBOBJECT element:

SUBMIT_BUTTON: WOSubmitButton {action = sayHello};

specifies how to return the Hello page. It associates the SUBMIT_BUTTON
element with the sayHello method defined in Main.wos.

The declaration specifies that a WOSubmitButton generates HTML for the
SUBMIT_BUTTON element, and that the action assigned to the
WOSubmitButton object, sayHello, is invoked when a user submits the form.

The sayHello method:

id nameString;

- sayHello

{

id nextPage;

nextPage = [WOApp pageWithName:@"Hello"];

[nextPage setNameString:nameString];

return nextPage;

}

finds or creates a component object to represent the Hello page by sending a
pageWithName: message to WOApp—the global variable representing
HelloWorld’s application object. If an object representing the Hello page
doesn’t exist, pageWithName: finds the Hello.wo component directory and creates a
component object from it.

gets the value
entered by the user

stores it in the
script variable

WOText
Field

nameString

19

Getting Started Writing HelloWorld

Next, sayHello sets the Hello component’s nameString variable by sending a
message to the Hello component. To access the variables declared in another
script file, you use accessor methods. There are two kinds of accessor methods:
set methods that set the value of a variable and get methods that return the value
of a variable.

Set methods have the form setVariableName:, where variableName is the name of the
script variable. For example, the Hello page declares the variable nameString, so
the method setNameString: is automatically available to set its value. Notice that
the “n” in the variable name is lowercase, but in the set method name, it’s
uppercase. The method name for a set method capitalizes the first letter of the
variable name if it’s not an uppercase letter, and then prepends the word “set”
to it.

Get methods have the form variableName, where variableName is the name of the
variable. For example, to get the value of the Hello component’s nameString
variable, you invoke a method of the same name. In WebScript, both set and get
accessor methods are automatically available for all script variables.

Note: It is customary to start all variable names with lowercase letters.

After setting the Hello component’s nameString variable, sayHello returns the
Hello component.

Hello Component Files
The files for the Hello component establish how to generate the personalized
greeting. The template for the Hello page contains the following HTML
elements:

<HTML>

<HEAD>

<TITLE>Hello World!</TITLE>

</HEAD>

<BODY>

Hello <WEBOBJECT NAME = "NAME_STRING"></WEBOBJECT>!

</BODY>

</HTML>

The declarations file contains the following declaration of a WOString object to
substitute the user’s name for the NAME_STRING WEBOBJECT element:

NAME_STRING: WOString {value = nameString};

Like WOTextField objects, WOString objects have a value attribute. The
WOString is responsible for getting the value in nameString and putting it in the
corresponding page.

Getting Started Behind the Scenes of a WebObjects Application

20

Figure 12. Getting a Value and Displaying it in a Page

The script for the second page contains only one line:

id nameString;

The nameString variable must be declared so it can be associated with the
NAME_STRING element in the template file. Recall that nameString is set from
the Main component in the sayHello method.

Behind the Scenes of a WebObjects Application

When a WebObjects application receives a request from a WebObjects adaptor,
it processes the request in three phases. As shown in Figure 13, the application
uses the page-to-component mappings defined in the declarations files to:

• Prepare for the request.
• Invoke an action.
• Generate a response page.

Hello Joe

gets the value
from the script
variable

WOString

nameString

puts it in the page

21

Getting Started Behind the Scenes of a WebObjects Application

Figure 13. Request-Response Loop

The following sections describes what happens during each phase.

Prepare for Request
The application prepares for the request by updating variables in the request
page—the page from which the request was made. If a user has provided any
input that maps to a component variable, the application assigns the new value
to the variable. For example, recall what happens when a user clicks Submit in
the first page of HelloWorld: the application gets the value from the
NAME_FIELD text field and assigns it to the nameString variable defined in the
Main component.

Invoke Action
After preparing for the request, the application determines whether or not the
user has triggered an action. If an action has been triggered—for example, if the
user clicked a button or a hyperlink—the application invokes the action method
that corresponds to what the user did. For example, clicking Submit in
HelloWorld has the effect of invoking the sayHello action method. An action
method returns an object to represent the response page—the page that is sent
back to the web server. sayHello returns an object to represent the Hello page. If
the user does not trigger an action, the object representing the request page also
represents the response page.

1 Prepare for Request

2 Invoke Action

3 Generate Response

Request Page

User performs
an action.

Response Page

User sees the
next page.

Request

Response

Web Browser WebObjects Application

Getting Started Summary

22

Generate Response
It is the responsibility of the response page object to generate the HTML for
the response. Using the HTML template and declarations file, a component
generates the HTML that is eventually displayed in the user’s web browser. For
example, after Submit is clicked in HelloWorld and sayHello returns an object to
represent the Hello page, the Hello page object generates the resulting
personalized greeting.

Summary

How Do I Connect a WebObjects Application to the Web?
To connect a WebObjects application to the Web, you need the following:

• An HTTP server. You can use any HTTP server that uses the Common
Gateway Interface (CGI) or the Netscape Server API (NSAPI).

• A WebObjects adaptor. A WebObjects adaptor connects WebObjects
applications to the Web by acting as an intermediary between web
applications and HTTP servers. Adaptors insulate applications from server
interfaces by handling all server communication. Simply by switching
adaptors, you use a different HTTP server and a different server interface
without modifying application code.

WebObjects provides an adaptor for servers that use the Common Gateway
Interface (CGI) and an adaptor for the Netscape Commerce Server that uses
the Netscape Server API (NSAPI).

• A WebObjects application executable. An application executable receives
incoming requests and responds to them, usually by returning a dynamically
generated HTML page. An executable can be a compiled application linked
with the WebObjects library, or it can be one of the two default WebObjects
application executables: DefaultApp or EOFDefaultApp.

If the application doesn’t contain any compiled code, you use a default
application. Instead of building your own executable, you implement all the
application logic in script files. The default applications use these scripts to
respond to requests.

What’s in a WebObjects Application?
A typical WebObjects application contains the following ingredients:

23

Getting Started Summary

• Components that specify the content, presentation, and behavior of the
application’s pages

• An optional application script that creates and manages application-wide
resources

• Optional compiled code that implements custom data and logic

• WebObjects classes that provide an infrastructure for the web application

What Parts Do I Write?
You write the following parts of a WebObjects application:

• Components consisting of HTML templates, script files, and declarations
files

• An optional application script

• Optional compiled code

How Do I Run a WebObjects Application?
To run a WebObjects application, you open a URL with the following form:

Figure 14. URL to Start a WebObjects Application

What Happens Behind the Scenes?
Behind the scenes of a running WebObjects application, the application enters
a request-response loop each time it receives a request. In the request-response
loop, a WebObjects application uses the page-to-component mappings defined
in declarations files to:

• Prepare for the request.
• Invoke an action.
• Generate a response page.

The WebObjects application
directory in
<DocumentRoot>/WebObjects

Examples/HelloWorld

Name of the
Web server’s
cgi-bin directory

cgi-bin/

Web server
host name

//sonora/http: WebObjects/

